First/Second Semester B.E. Degree Examination, December 2011 Basic Electronics

Time: 3 hrs. Max. Marks:100

Note: I. Answer FIVE full questions choosing at least TWO from each part.

- 2. Answer all objective type questions only in OMR sheet page 5 of the Answer Booklet.
- 3. Answer to objective type questions on sheets other than OMR will not be valued.

PART-A

1	a.	 i) The peak inverse voltage is the peak voltage across the diode when the diode is biased. 					
		A) forward	B) Reverse	C) Unbiased	D) All of t	hese.	
		ii) The reverse saturat	ion current doubles a	at every rise	in temperature.		
		A) 20°C	B) 40°C	C) 10°C	D) None o		
		iii) The ripple factor of A) 40.6	f full wave rectifier v B) 0.483	vithout filter is about C) 1.21	D) 0.812		
		iv) The average dc voltage of a full wave rectifier is					
		A) V_m/π	B) V _m /2	C) $2V_m/\pi$	D) V _m	(04 Marks)	
	b.	With a neat circuit dia bridge rectifier.	agram and relevant v	waveforms, explain th	ne operation of	a full wave (07 Marks)	
-	c.	A diode with a 700 n factor. If the forward vector current at temperatures	oltage drop remains	er dissipation at 25°C constant at 0.7V, calc	has a 5 mW/Gulate the maxim	°C devating um forward (05 Marks)	
	d.	Define line regulation a	and load regulation.			(04 Marks)	
2	a.	Select the correct answer i) The arrow in the grant A) base		nsistor defines the dir C) emitter	rection of		
		ii) In the cutoff region,A) forward biased	emitter-base junction B) reverse biased	•	D) None of th		
		iii) The common-base of A) I _C /I _B	current gain (α_{dc}) of a B) I_C/I_E	a transistor is given by C) I _E /I _C			
		iv) In the common-emitter configuration, I_{CEO} is given by A) I_{CBO} B) β I_{CBO} C) $(1 + \beta)$ I_{CBO} D) None of these. (04 Marks)					
	b.	Sketch the typical transpirefly explain the three	nsistor input and or	utput characteristics			

c. Explain the procedure for drawing the DC load line on the transistor CE output characteristics. In the circuit shown in Fig.Q2(c), a silicon transistor with $\beta_{dc} = 100$ is used. Draw the DC load line on output characteristics and indicate Q-point. (09 Marks)

- 3 a. Select the correct answer:
 - i) The Q-point will shift if _____ changes.
 - A) temperature
- B) β_{dc}
- C) I_{CBO}
- D) All the these.
- ii) For the base-bias circuit, if the base current is 30 μA and β_{dc} is 100, then the value of I_C is
 - A) 3 mA
- B) 30 mA
- C) 3 µA
- D) 100 mA.
- iii) The stability factor S for the base bias circuit is
 - A) B
- B) 1/β
- C) $1 + \beta$
- D) None of these.
- iv) The value of R_T in voltage divider bias circuit is
 - A) $R_1 + R_2$
- $B) \frac{R_1 R_2}{R_1 + R_2}$
- C) R_1R_2
- D) None of these. (04 Marks)
- b. Sketch the circuit of voltage divider bias and discuss its approximate analysis. (08 Marks)
- c. Calculate the maximum and minimum levels of I_C and V_{CE} for the bias circuit shown in Fig.Q3(c), when $h_{FE(min)} = 50$ and $h_{FE(max)} = 200$. Assume $V_{BE} = 0.7$. (08 Marks)

- 4 a. Select the correct answer:
 - i) SCR is a _____ device.
 - A) bidirectional

- B) unidirectional
- C) both unidirectional and bidirectional
- D) None of these.
- ii) _____ is the minimum current that should flow through a SCR to maintain it in the ON state.
 - A) Maximum RMS current
- B) Gate trigger current

C) Holding current

D) None of these.

	a.	iii) UJT is a three te	rminal device with	a pn-junctio	on.	
		A) double	B) single	C) three	D) None of these).
		iv) FET is aA) Current	controlled devi B) power	ce. C) voltage	D) None of these	. (04 Marks)
	b.	Draw the circuit dia the gate terminal. Sk		an SCR can be trigg reforms and explain		of a pulse to (08 Marks)
	c.	Draw and explain th	e family of drain ch	aracteristics for a n-o	channel JFET.	(08 Marks)
		•	DAT	or n		
_	_	Calact the server at au		RT – B		
)	a.	Select the correct ani) Two amplifiers voltage gain is		10 and 100, are con	nnected in cascade.	The overall
		A) 100	B) 90	C) 1000	D) 10	
		ii) To obtain the su equal to	ustained oscillations	s in a sinusoidal osc	illator, the loop gain	n should be
		A) 1	B) ∞	C) 0	D) None of these	: .
				requency of oscillation C) 1 / 2πRC√3		
		iv) An oscillator use A) negative	es type of B) positive		D) None of these	. (04 Marks)
	b.	Draw and explain the the frequency respon			nmon-emitter amplif	ier. Explain (08 Marks)
	c.	Draw the circuit of frequency of oscillat		's oscillator and exp 400 PF and L = 2 m		alculate the (08 Marks)
6	a.	i) An ideal op-amp	hassle			
		A) 0	B) ∞	C) unity	D) None of these	•
		ii) The supply volta A) ∞	age or power supply B) 0	rejection ratio of an C) 1	ideal op-amp is D) None of these.	•
		iii) An op-amp can l A) adder	be used as B) integrator	C) voltage follow	ver D) All of these.	
		iv) In an inverting at A) 90°	B) 180°	C) 0°	rith input and output. D) 360°	(04 Marks)
	b.	Explain how an op-a	•		·	(04 Marks)
	C.	For the circuit show	n in Fig.Q6(c), calcu to K.a.	late the output volta	ge. V _o .	(06 Marks)
			-1V		0	
					· Ve	
	d.	Explain how the amp	olitude, frequency a	Fig.Q6(c) nd time period are m	easured using a CRC). (06 Marke)
			r	min period mo III		(co man ma)

3 of 4

7	a.	Select the correct answer: i) $(76.6)_8 = (?)_2$					
		A) (111110.110) ₂ B) (110110.110) ₂ C) (111100.110) ₂ D) (101100.100) ₂					
		ii) $(15)_{10} = (?)_{BCD}$ A) $(11010110)_{BCD}$ B) $(00010101)_{BCD}$ C) $(10010101)_{BCD}$ D) $(00100101)_{BCD}$					
		iii) 2's complement of binary number 10101 is A) 00011 B) 01010 C) 01011 D) 10010					
		iv) $(39)_{10} = (?)_2$ A) $(100111)_2$ B) $(100110)_2$ C) $(110101)_2$ D) $(111001)_2$ (04 Marks)					
	b. Explain the principle of amplitude modulation with the suitable waveforms expression for AM wave.						
	c.	Compare AM and FM. (04 Marks)					
	d.	Subtract using 2's complement: i) $(111001)_2 - (101011)_2$ ii) $(11010)_2 - (1010110)$ (04 Marks)					
8	a.	Select the correct answer: i) The basic gates are A) NAND and NOR B) NOT, AND and OR C) EXOR and EXNOR D) None of these.					
		ii) $A + \overline{A}$ is A) A B) 0 C) 1 D) None of these.					
		iii) To add (1010) ₂ and (1101) ₂ binary numbers, we need full adders. A) 1 B) 2 C) 3 D) 4					
		iv) The output expression for EX-OR is A) $A + B$ B) $A \overline{B} + \overline{A} B$ C) $\overline{A} \overline{B} + AB$ D) None of these. (04 Marks)					
	b.	Simplify the following Boolean expressions: i) $Y = (A + \overline{B} + \overline{C})(A + \overline{B} + C)$ ii) $Y = A [B + C (\overline{AB} + \overline{AC})]$ (06 Marks)					
	c.	Explain the operation of DTL NOR gate. (06 Marks)					
	d.	Realize a parallel binary adder for the following binary numbers: i) (1011) ₂ ii) (1101) ₂ (04 Marks)					

. 8
