First/Second Semester B.E. Degree Examination, December 2011 Basic Electronics Time: 3 hrs. Max. Marks:100 Note: I. Answer FIVE full questions choosing at least TWO from each part. - 2. Answer all objective type questions only in OMR sheet page 5 of the Answer Booklet. - 3. Answer to objective type questions on sheets other than OMR will not be valued. ## PART-A | 1 | a. | i) The peak inverse voltage is the peak voltage across the diode when the diode is biased. | | | | | | |---|----|---|--|---|-----------------------------|---|--| | | | A) forward | B) Reverse | C) Unbiased | D) All of t | hese. | | | | | ii) The reverse saturat | ion current doubles a | at every rise | in temperature. | | | | | | A) 20°C | B) 40°C | C) 10°C | D) None o | | | | | | iii) The ripple factor of
A) 40.6 | f full wave rectifier v
B) 0.483 | vithout filter is about
C) 1.21 | D) 0.812 | | | | | | iv) The average dc voltage of a full wave rectifier is | | | | | | | | | A) V_m/π | B) V _m /2 | C) $2V_m/\pi$ | D) V _m | (04 Marks) | | | | b. | With a neat circuit dia bridge rectifier. | agram and relevant v | waveforms, explain th | ne operation of | a full wave
(07 Marks) | | | - | c. | A diode with a 700 n factor. If the forward vector current at temperatures | oltage drop remains | er dissipation at 25°C constant at 0.7V, calc | has a 5 mW/Gulate the maxim | °C devating
um forward
(05 Marks) | | | | d. | Define line regulation a | and load regulation. | | | (04 Marks) | | | 2 | a. | Select the correct answer i) The arrow in the grant A) base | | nsistor defines the dir
C) emitter | rection of | | | | | | ii) In the cutoff region,A) forward biased | emitter-base junction B) reverse biased | • | D) None of th | | | | | | iii) The common-base of A) I _C /I _B | current gain (α_{dc}) of a B) I_C/I_E | a transistor is given by
C) I _E /I _C | | | | | | | iv) In the common-emitter configuration, I_{CEO} is given by A) I_{CBO} B) β I_{CBO} C) $(1 + \beta)$ I_{CBO} D) None of these. (04 Marks) | | | | | | | | b. | Sketch the typical transpirefly explain the three | nsistor input and or | utput characteristics | | | | c. Explain the procedure for drawing the DC load line on the transistor CE output characteristics. In the circuit shown in Fig.Q2(c), a silicon transistor with $\beta_{dc} = 100$ is used. Draw the DC load line on output characteristics and indicate Q-point. (09 Marks) - 3 a. Select the correct answer: - i) The Q-point will shift if _____ changes. - A) temperature - B) β_{dc} - C) I_{CBO} - D) All the these. - ii) For the base-bias circuit, if the base current is 30 μA and β_{dc} is 100, then the value of I_C is - A) 3 mA - B) 30 mA - C) 3 µA - D) 100 mA. - iii) The stability factor S for the base bias circuit is - A) B - B) 1/β - C) $1 + \beta$ - D) None of these. - iv) The value of R_T in voltage divider bias circuit is - A) $R_1 + R_2$ - $B) \frac{R_1 R_2}{R_1 + R_2}$ - C) R_1R_2 - D) None of these. (04 Marks) - b. Sketch the circuit of voltage divider bias and discuss its approximate analysis. (08 Marks) - c. Calculate the maximum and minimum levels of I_C and V_{CE} for the bias circuit shown in Fig.Q3(c), when $h_{FE(min)} = 50$ and $h_{FE(max)} = 200$. Assume $V_{BE} = 0.7$. (08 Marks) - 4 a. Select the correct answer: - i) SCR is a _____ device. - A) bidirectional - B) unidirectional - C) both unidirectional and bidirectional - D) None of these. - ii) _____ is the minimum current that should flow through a SCR to maintain it in the ON state. - A) Maximum RMS current - B) Gate trigger current C) Holding current D) None of these. | | a. | iii) UJT is a three te | rminal device with | a pn-junctio | on. | | |---|----|---|----------------------------------|---|------------------------------------|-----------------------------| | | | A) double | B) single | C) three | D) None of these |). | | | | iv) FET is aA) Current | controlled devi
B) power | ce. C) voltage | D) None of these | . (04 Marks) | | | b. | Draw the circuit dia the gate terminal. Sk | | an SCR can be trigg
reforms and explain | | of a pulse to
(08 Marks) | | | c. | Draw and explain th | e family of drain ch | aracteristics for a n-o | channel JFET. | (08 Marks) | | | | • | DAT | or n | | | | _ | _ | Calact the server at au | | RT – B | | | |) | a. | Select the correct ani) Two amplifiers voltage gain is | | 10 and 100, are con | nnected in cascade. | The overall | | | | A) 100 | B) 90 | C) 1000 | D) 10 | | | | | ii) To obtain the su
equal to | ustained oscillations | s in a sinusoidal osc | illator, the loop gain | n should be | | | | A) 1 | B) ∞ | C) 0 | D) None of these | : . | | | | | | requency of oscillation C) 1 / 2πRC√3 | | | | | | iv) An oscillator use
A) negative | es type of B) positive | | D) None of these | . (04 Marks) | | | b. | Draw and explain the the frequency respon | | | nmon-emitter amplif | ier. Explain
(08 Marks) | | | c. | Draw the circuit of frequency of oscillat | | 's oscillator and exp
400 PF and L = 2 m | | alculate the (08 Marks) | | 6 | a. | i) An ideal op-amp | hassle | | | | | | | A) 0 | B) ∞ | C) unity | D) None of these | • | | | | ii) The supply volta
A) ∞ | age or power supply B) 0 | rejection ratio of an C) 1 | ideal op-amp is D) None of these. | • | | | | iii) An op-amp can l
A) adder | be used as B) integrator | C) voltage follow | ver D) All of these. | | | | | iv) In an inverting at A) 90° | B) 180° | C) 0° | rith input and output. D) 360° | (04 Marks) | | | b. | Explain how an op-a | • | | · | (04 Marks) | | | C. | For the circuit show | n in Fig.Q6(c), calcu
to K.a. | late the output volta | ge. V _o . | (06 Marks) | | | | | -1V | | 0 | | | | | | | | · Ve | | | | d. | Explain how the amp | olitude, frequency a | Fig.Q6(c)
nd time period are m | easured using a CRC |). (06 Marke) | | | | | r | min period mo III | | (co man ma) | 3 of 4 | 7 | a. | Select the correct answer:
i) $(76.6)_8 = (?)_2$ | | | | | | |---|--|---|--|--|--|--|--| | | | A) (111110.110) ₂ B) (110110.110) ₂ C) (111100.110) ₂ D) (101100.100) ₂ | | | | | | | | | ii) $(15)_{10} = (?)_{BCD}$
A) $(11010110)_{BCD}$ B) $(00010101)_{BCD}$ C) $(10010101)_{BCD}$ D) $(00100101)_{BCD}$ | | | | | | | | | iii) 2's complement of binary number 10101 is A) 00011 B) 01010 C) 01011 D) 10010 | | | | | | | | | iv) $(39)_{10} = (?)_2$
A) $(100111)_2$ B) $(100110)_2$ C) $(110101)_2$ D) $(111001)_2$ (04 Marks) | | | | | | | | b. Explain the principle of amplitude modulation with the suitable waveforms expression for AM wave. | | | | | | | | | c. | Compare AM and FM. (04 Marks) | | | | | | | | d. | Subtract using 2's complement:
i) $(111001)_2 - (101011)_2$ ii) $(11010)_2 - (1010110)$ (04 Marks) | | | | | | | 8 | a. | Select the correct answer: i) The basic gates are A) NAND and NOR B) NOT, AND and OR C) EXOR and EXNOR D) None of these. | | | | | | | | | ii) $A + \overline{A}$ is A) A B) 0 C) 1 D) None of these. | | | | | | | | | iii) To add (1010) ₂ and (1101) ₂ binary numbers, we need full adders. A) 1 B) 2 C) 3 D) 4 | | | | | | | | | iv) The output expression for EX-OR is A) $A + B$ B) $A \overline{B} + \overline{A} B$ C) $\overline{A} \overline{B} + AB$ D) None of these. (04 Marks) | | | | | | | | b. | Simplify the following Boolean expressions:
i) $Y = (A + \overline{B} + \overline{C})(A + \overline{B} + C)$
ii) $Y = A [B + C (\overline{AB} + \overline{AC})]$ (06 Marks) | | | | | | | | c. | Explain the operation of DTL NOR gate. (06 Marks) | | | | | | | | d. | Realize a parallel binary adder for the following binary numbers: i) (1011) ₂ ii) (1101) ₂ (04 Marks) | | | | | | . 8 ****